This is the multi-page printable view of this section. Click here to print.
Tutorials
- 1: Compile
- 2: Deploy
- 3: Add Cases
- 3.1: Add Custom Collection
- 3.2: Add Autotracing
- 3.3: Add Event
- 3.4: Add Metrics
1 - Compile
1. Build with the Official Image
To isolate the developer’s local environment and simplify the build process, we provide a containerized build method. You can directly use docker build to produce an image containing the core collector huatuo-bamai, BPF objects, tools, and more. Run the following in the project root directory:
docker build --network host -t huatuo/huatuo-bamai:latest .
2. Build a Custom Image
Dockerfile.dev:
FROM golang:1.23.0-alpine AS base
# Speed up Alpine package installation if needed
# RUN sed -i 's/dl-cdn.alpinelinux.org/mirrors.aliyun.com/g' /etc/apk/repositories
RUN apk add --no-cache \
make \
clang15 \
libbpf-dev \
bpftool \
curl \
git
ENV PATH=$PATH:/usr/lib/llvm15/bin
# build huatuo components
FROM base AS build
ARG BUILD_PATH=${BUILD_PATH:-/go/huatuo-bamai}
ARG RUN_PATH=${RUN_PATH:-/home/huatuo-bamai}
WORKDIR ${BUILD_PATH}
2.1 Build the Dev Image
docker build --network host -t huatuo/huatuo-bamai-dev:latest -f ./Dockerfile.dev .
2.2 Run the Dev Container
docker run -it --privileged --cgroupns=host --network=host \
-v /path/to/huatuo:/go/huatuo-bamai \
huatuo/huatuo-bamai-dev:latest sh
2.3 Compile Inside the Container
Run:
make
Once the build completes, all artifacts are generated under ./_output.
3. Build on a Physical Machine or VM
The collector depends on the following tools. Install them based on your local environment:
- make
- git
- clang15
- libbpf
- bpftool
- curl
Due to significant differences across local environments, build issues may occur.
To avoid environment inconsistencies and simplify troubleshooting, we strongly recommend using the Docker build approach whenever possible.
2 - Deploy
The HUATUO collector huatuo-bamai runs on physical machines or VMs.
We provide both binary packages and Docker images, and you can deploy them in any custom way, such as:
- systemd and DaemonSet deployments are recommended for production.
- Docker / Compose is suitable for development and quick validation scenarios.
Binary Download
The latest binary package provided is v2.1.0; the master branch is for reference only.
Mirror Download
Docker images are stored on Docker Hub by default (https://hub.docker.com/u/huatuo).
2.1 - Daemonset
HUATUO provides the simplest DaemonSet deployment option to minimize setup complexity.
Deploying the HUATUO collector via DaemonSet involves the following steps:
1. Download the Collector Configuration File
curl -L -o huatuo-bamai.conf https://github.com/ccfos/huatuo/raw/main/huatuo-bamai.conf
Modify this configuration file according to your environment, such as kubelet connection settings and Elasticsearch settings.
2. Create a ConfigMap
kubectl create configmap huatuo-bamai-config --from-file=./huatuo-bamai.conf
3. Deploy the Collector
kubectl apply -f huatuo-daemonset.minimal.yaml
Contents of huatuo-daemonset.minimal.yaml:
apiVersion: apps/v1
kind: DaemonSet
metadata:
name: huatuo
namespace: default
labels:
app: huatuo
spec:
selector:
matchLabels:
app: huatuo
template:
metadata:
labels:
app: huatuo
spec:
containers:
- name: huatuo
image: docker.io/huatuo/huatuo-bamai:latest
resources:
limits:
cpu: '1'
memory: 2Gi
requests:
cpu: 500m
memory: 512Mi
securityContext:
privileged: true
volumeMounts:
- name: proc
mountPath: /proc
- name: sys
mountPath: /sys
- name: run
mountPath: /run
- name: var
mountPath: /var
- name: etc
mountPath: /etc
- name: huatuo-local
mountPath: /home/huatuo-bamai/huatuo-local
- name: huatuo-bamai-config-volume
mountPath: /home/huatuo-bamai/conf/huatuo-bamai.conf
subPath: huatuo-bamai.conf
volumes:
- name: proc
hostPath:
path: /proc
- name: sys
hostPath:
path: /sys
- name: run
hostPath:
path: /run
- name: var
hostPath:
path: /var
- name: etc
hostPath:
path: /etc
- name: huatuo-local
hostPath:
path: /var/log/huatuo/huatuo-local
type: DirectoryOrCreate
- name: huatuo-bamai-config-volume
configMap:
name: huatuo-bamai-config
hostNetwork: true
hostPID: true
2.2 - Docker
Run Only the Collector
Start the Container
docker run --privileged --cgroupns=host --network=host -v /sys:/sys -v /proc:/proc -v /run:/run huatuo/huatuo-bamai:latest
⚠️ This uses the default configuration file inside the container. The internal default configuration does not connect to Elasticsearch. For a complete setup, mount your own
huatuo-bamai.confusing-v, and update the config according to your environment (kubelet access, Elasticsearch settings, local log storage path, etc.).
Deploy All Components (Docker Compose)
For local development and validation, using Docker Compose is the most convenient approach.
You can quickly launch a full environment containing the collector, Elasticsearch, Prometheus, Grafana, and other components.
docker compose --project-directory ./build/docker up
It is recommended to install Docker Compose using the plugin method: https://docs.docker.com/compose/install/linux/
2.3 - Systemd
Install by RPM
OpenCloudOS currently provides the v2.1.0 RPM package; the master is for reference only.
Tencent OpenCloudOS provides an official HUATUO package:
https://mirrors.opencloudos.tech/epol/9/Everything/x86_64/os/Packages/huatuo-bamai-2.1.0-2.oc9.x86_64.rpm
This allows HUATUO to be quickly installed and enabled on OpenCloudOS.
- x86_64 architecture
wget https://mirrors.opencloudos.tech/epol/9/Everything/x86_64/os/Packages/huatuo-bamai-2.1.0-2.oc9.x86_64.rpm
- arm64 architecture
wget https://mirrors.opencloudos.tech/epol/9/Everything/aarch64/os/Packages/huatuo-bamai-2.1.0-2.oc9.aarch64.rpm
- Install HUATUO on OC8
sudo rpm -ivh huatuo-bamai*.rpm
Other RPM-based operating systems can install HUATUO the same way.
As usual, you must update the config file according to your environment (e.g., kubelet connection, Elasticsearch settings).
Full OpenCloudOS installation guide:
https://mp.weixin.qq.com/s/Gmst4_FsbXUIhuJw1BXNnQ
Install by Binary Package
The latest binary package provided is v2.1.0; the master branch is for reference only.
You can also download the binary package and configure/manage it manually.
Again, update the configuration file based on your actual environment (kubelet connection, Elasticsearch settings, etc.).
3 - Add Cases
3.1 - Add Custom Collection
The framework provides convenient APIs, including module startup, data storage, container information, BPF-related (load, attach, read, detach, unload), etc. You can implement custom collection logic and flexibly choose the appropriate collection mode and storage method.
Tracing Type
Based on your scenarios, you can implement the ITracingEvent interface in the core/autotracing or core/events directory to complete tracing-type collection.
// ITracingEvent represents a tracing/event
type ITracingEvent interface {
Start(ctx context.Context) error
}
example:
type exampleTracing struct{}
// Register callback
func init() {
tracing.RegisterEventTracing("example", newExample)
}
// Create tracing
func newExample() (*tracing.EventTracingAttr, error) {
return &tracing.EventTracingAttr{
TracingData: &exampleTracing{},
Internal: 10, // Interval for enable tracing again (in seconds)
Flag: tracing.FlagTracing, // mark as tracing type
}, nil
}
// Implement ITracingEvent
func (t *exampleTracing) Start(ctx context.Context) error {
// do something
...
// Save data to ES and local file
storage.Save("example", ccontainerID, time.Now(), tracerData)
}
// Implement Collector interface for Prometheus format output (optional)
func (c *exampleTracing) Update() ([]*metric.Data, error) {
// from tracerData to prometheus.Metric
...
return data, nil
}
Metric Type
Implement the Collector interface in the path core/metrics to complete metric-type collection.
type Collector interface {
// Get new metrics and expose them via prometheus registry.
Update() ([]*Data, error)
}
example:
type exampleMetric struct{}
// Register callback
func init() {
tracing.RegisterEventTracing("example", newExample)
}
// Create Metric
func newExample() (*tracing.EventTracingAttr, error) {
return &tracing.EventTracingAttr{
TracingData: &filenrCollector{
metric: []*metric.Data{
metric.NewGaugeData("name1", 0, "description of example_name1", nil),
metric.NewGaugeData("name2", 0, "description of example_name2", nil),
},
},
Flag: tracing.FlagMetric, // mark as Metric type
}, nil
}
// Implement Collector interface for Prometheus format output
func (c *exampleMetric) Update() ([]*metric.Data, error) {
// do something
...
return data, nil
}
The path core of the project includes multiple useful examples of the three collection modules, covering BPF code, map data interaction, container information, and more. For further details, refer to the corresponding code implementations.
3.2 - Add Autotracing
Overview
- Type:Exception event-driven(tracing/autotracing)
- Function:Automatically tracks system abnormal states and triggers context information capture when exceptions occur
- Characteristics:
- When system abnormalities occur,
autotracingautomatically triggers and captures relevant context information - Event data is stored locally in real-time and also sent to remote ES, while you can also generate Prometheus metrics for observation
- Suitable for significant performance overhead, such as triggering capture when detecting metrics rising above certain thresholds or rising too rapidly
- When system abnormalities occur,
- Already Integrated:abnormal usage tracking (cpu idle), D-state tracking (dload), container internal/external contention (waitrate), sudden memory allocation (memburst), disk abnormal tracking (iotracer)
How to Add Autotracing
AutoTracing only requires implementing the ITracingEvent interface and completing registration to add events to the system.
There is no implementation difference between
AutoTracingandEventin the framework; they are only differentiated based on practical application scenarios.
// ITracingEvent represents a autotracing or event
type ITracingEvent interface {
Start(ctx context.Context) error
}
1. Create Structure
type exampleTracing struct{}
2. Register Callback Function
func init() {
tracing.RegisterEventTracing("example", newExample)
}
func newExample() (*tracing.EventTracingAttr, error) {
return &tracing.EventTracingAttr{
TracingData: &exampleTracing{},
Internal: 10, // Interval in seconds before re-enabling tracing
Flag: tracing.FlagTracing, // Mark as tracing type; | tracing.FlagMetric (optional)
}, nil
}
3. Implement ITracingEvent
func (t *exampleTracing) Start(ctx context.Context) error {
// detect your care about
...
// Store data to ES and locally
storage.Save("example", ccontainerID, time.Now(), tracerData)
}
Additionally, you can optionally implement the Collector interface to output in Prometheus format:
func (c *exampleTracing) Update() ([]*metric.Data, error) {
// from tracerData to prometheus.Metric
...
return data, nil
}
The core/autotracing directory in the project has integrated various practical autotracing 示examples, along with rich underlying interfaces provided by the framework, including BPF program and map data interaction, container information, etc. For more details, refer to the corresponding code implementations.
3.3 - Add Event
Overview
- Type: Exception event-driven(tracing/event)
- Function:Continuously runs in the system and captures context information when preset thresholds are reached
- Characteristics:
- Unlike
autotracing,eventruns continuously rather than being triggered only when exceptions occur. - Event data is stored locally in real-time and also sent to remote ES. You can also generate Prometheus metrics for observation.
- Suitable for continuous monitoring and real-time analysis, enabling timely detection of abnormal behaviors in the system. The performance impact of
eventtype collection is negligible.
- Unlike
- Already Integrated: Soft interrupt abnormalities(softirq)、abnormal memory allocation(oom)、soft lockups(softlockup)、D-state processes(hungtask)、memory reclaim(memreclaim)、abnormal packet loss(dropwatch)、network inbound latency (net_rx_latency), etc.
How to Add Event Metrics
Simply implement the ITracingEvent interface and complete registration to add events to the system.
There is no implementation difference between
AutoTracingandEventin the framework; they are only differentiated based on practical application scenarios.
// ITracingEvent represents a tracing/event
type ITracingEvent interface {
Start(ctx context.Context) error
}
1. Create Event Structure
type exampleTracing struct{}
2. Register Callback Function
func init() {
tracing.RegisterEventTracing("example", newExample)
}
func newExample() (*tracing.EventTracingAttr, error) {
return &tracing.EventTracingAttr{
TracingData: &exampleTracing{},
Internal: 10, // Interval in seconds before re-enabling tracing
Flag: tracing.FlagTracing, // Mark as tracing type; | tracing.FlagMetric (optional)
}, nil
}
3. Implement the ITracingEvent Interface
func (t *exampleTracing) Start(ctx context.Context) error {
// do something
...
// Store data to ES and locally
storage.Save("example", ccontainerID, time.Now(), tracerData)
}
Additionally, you can optionally implement the Collector interface to output in Prometheus format:
func (c *exampleTracing) Update() ([]*metric.Data, error) {
// from tracerData to prometheus.Metric
...
return data, nil
}
The core/events directory in the project has integrated various practical events examples, along with rich underlying interfaces provided by the framework, including BPF program and map data interaction, container information, etc. For more details, refer to the corresponding code implementations.
3.4 - Add Metrics
Overview
The Metrics type is used to collect system performance and other indicator data. It can output in Prometheus format, serving as a data provider through the /metrics (curl localhost:<port>/metrics) .
-
Type:Metrics collection
-
Function:Collects performance metrics from various subsystems
-
Characteristics:
- Metrics are primarily used to collect system performance metrics such as CPU usage, memory usage, network statistics, etc. They are suitable for monitoring system performance and support real-time analysis and long-term trend observation.
- Metrics can come from regular procfs/sysfs collection or be generated from tracing types (autotracing, event).
- Outputs in Prometheus format for seamless integration into the Prometheus observability ecosystem.
-
Already Integrated:
- cpu (sys, usr, util, load, nr_running…)
- memory(vmstat, memory_stat, directreclaim, asyncreclaim…)
- IO (d2c, q2c, freeze, flush…)
- Network(arp, socket mem, qdisc, netstat, netdev, socketstat…)
How to Add Statistical Metrics
Simply implement the Collector interface and complete registration to add metrics to the system.
type Collector interface {
// Get new metrics and expose them via prometheus registry.
Update() ([]*Data, error)
}
1. Create a Structure
Create a structure that implements the Collector interface in the core/metrics directory:
type exampleMetric struct{
}
2. Register Callback Function
func init() {
tracing.RegisterEventTracing("example", newExample)
}
func newExample() (*tracing.EventTracingAttr, error) {
return &tracing.EventTracingAttr{
TracingData: &exampleMetric{},
Flag: tracing.FlagMetric, // Mark as Metric type
}, nil
}
3. Implement the Update Method
func (c *exampleMetric) Update() ([]*metric.Data, error) {
// do something
...
return []*metric.Data{
metric.NewGaugeData("example", value, "description of example", nil),
}, nil
}
The core/metrics directory in the project has integrated various practical Metrics examples, along with rich underlying interfaces provided by the framework, including BPF program and map data interaction, container information, etc. For more details, refer to the corresponding code implementations.